[notes for days 2 and 3]

Welcome Statistics

Random Sampling

 All statistical sampling designs have in common the idea that

chance

NOT HUMAN CHOICE

is used to select the sample.

Randomize – let chance do the choosing!

Randomization can protect you against -factors that you know are in the data -factors you are not even aware of

Randomizing makes sure that on the average the sample looks like the population.

Summary of Sampling Methods

- Simple Random Sampling (SRS)
 - every individual has an equal chance of being selected
 - every set of *n* individuals has an equal chance of being selected
 - *most basic & fundamental type of sampling!

Describe how to select a SRS of 5 students from a group of 27:

- Assign each student a unique number from 1 27
- Use a RNG (on a calculator/computer) to generate 5
 UNIQUE numbers from 1 27 (repeated numbers will be ignored).
- The 5 students who have their numbers drawn will...

- Assign each student a unique number from 1 27
- Write the numbers 1 27 on slips of paper, and put them in a hat. Stir the slips to mix them.
- Without looking, draw 5 slips of paper from the hat WITHOUT REPLACEMENT.
- The 5 students who have their numbers drawn will...

Summary of Sampling Methods

Stratified Sampling

- divide population into strata (layers, subpopulations)
- Strata are homogenous
- take SRS from each strata

Cluster sampling

- divide population into clusters
- Clusters are heterogenous (mixed)
- Randomly select one (or more) cluster(s)
- Take a CENSUS within cluster(s)

Summary of Sampling Methods

Systematic Sampling

• Randomly select a starting point, then take (for example) every 10th (or 20th, or 5th, etc.) subject...

Multistage Sampling

- Randomness is involved at more than one stage
- Be careful not to confuse with CLUSTER sampling

bias ≠ error

Bias: Something that causes your measurements to systematically miss in the same direction every time. This is bad.

Sampling "error" is just sampling variation. (If you flip a coin 10 times, you won't ALWAYS get 5 heads & 5 tails... some variation is inevitable with randomness)

so if samples are prone to sampling error, why not conduct a census EVERY TIME?

Taking a CENSUS of the population is (usually) time-consuming and (often) error-prone

Types of data - Numerical vs Categorical

Numerical: Does it make sense to take an average?

Catergorical: Cannot take an average, but we CAN take a proportion (or percentage) of...

CCNCCNC

Name	Job Type	Age	Gender	Race	Salary	Zip Code
Jose Cedillo	Technical	27	Male	Hispanic	52,300	90630
Amanda Childers	Clerical	42	Female	White	27,500	90521
Tonia Chen	Management	51	Female	Asian	83,600	90629

A research group wishes to know the mean GPA of all 2544 students at McNeil High School. To estimate this, they take a random sample of 189 students that have zone classes in the C-wing, and pull those records. The mean GPA of the students in the sample is 2.98. According to the school registrar, the GPA of all 2544 students at McNeil is 3.09.

Identify the following

- a) Population (of interest): (WHO are we interested in?)
 ALL students at McNeil
- b) Parameter of interest: (WHAT are we interested in?)
 Mean GPA of ALL students at McNeil
- c) Sampling frame: (who had a CHANCE of being selected?)

 All students with zone class in the C-wing
- d) Sample: (who was actually selected?)
 The 189 students.

GPA is numerical data:

3.09 - this number is the PARAMETER (refers to the population)

2.89 - this number is the STATISTIC (refers to the sample)

A neighborhood interest group wants to know what proportion of households in Austin watch the TV show "So You Think You Can Dance." They select a random sample of 59 houses from Northwest Austin, and find that 35.6% of those families watch the program regularly. Local ratings indicate that about 22% of all households watch SYTYCD on a regular basis.

Identify the following

- a) Population (of interest): Households in Austin (probably ALL of Austin)
- b) Parameter of interest: What proportion of households in Austin watch "SYTYCD"
- c) Sampling frame: Households in Northwest Austin
- d) Sample: The 59 houses that were selected.

This is categorical data (think: "Did you watch SYTYCD?" The answer is Yes/No.

22% or 0.22 - this number is the PARAMETER (refers to the <u>p</u>opulation) 35.6% or 0.356 - this number is the STATISTIC (refers to the <u>s</u>ample)

Parameters vs. Statistics (population) (sample)

Proportions Means (categorical data) (numerical data) **Parameter** ("truth") **Statistics** ("estimate")