Define the following:		
Conditional statements		
Biconditional statements		
Inductive Reasoning		
Deductive Reasoning		
Counterexample		
Postulate		
Theorem		
Reflexive Property		
Symmetric Property		
Transitive Property		
Distributive Property		
Definition of Congruency		
Supplementary angles		
Complementary angles		
Vertical angles (draw a picture)		
Adjacent angles		
Linear Pair (draw a picture)		
Complete the following pat	terns:	
1) 3, 6, 12, 24,	,, 2) a, d, g, j,,	
3) Write a biconditional statement from the following definition: Two angles whose sum is 90° are complementary angles		

Name: _____pd: ___

Proof Test Review

		erse, Converse, & Contrapositive for the f lse. If false, give a counterexample.	following statement and then decide if		
Condi	tional	If I am 16, then I have my driver's lice	nse. Counterexample		
Inve	erse		T or F		
Conve	erse		T or F		
Contr	apositive _		T or F		
5) De	etermine if	the following conjecture is valid.	5)		
		holas can watch 30 minutes of television	if he cleans his room first. Nicholas		
		ans his room.			
	Conjecture	e: Nicholas watches 30 minutes of televis	ion.		
6) De	6) Determine if the following conjecture is valid. 6)6)				
	Given: If a	point A is on \overline{MN} , then $\overline{MA} \cong \overline{AN}$. If \overline{MA}	$\cong \overline{AN}$, then A is the midpoint of \overline{MN} .		
	Conjecture	e: If a point A is on \overline{MN} , then <i>it</i> is the min	dpoint of \overline{MN} .		
7) Underline the conclusion, and circle the hypothesis: I will pass my geometry test, if I do all my homework. Find the supplement and complement of the following:					
		supplement	complement		
8)	28.5				
9)	(3x-75)				
	_	easures 8 less than 4 times its supplemer e of the angle and its supplement.	nt. Find Angle: Supplement:		

Tell if the following are vertical angles, linear pair, adjacent angles, or no relationship (can choose more than 1 label for each pair)

∠COB & ∠BOD	
∠COA & ∠BOD	
∠AOD & ∠COB	

∠1 & ∠5	
∠2 & ∠3	
∠5 & ∠3	
∠3 & ∠4	
∠1 & ∠3	

Identify the property that justifies each statement.

18)
$$m\angle 1 = m\angle 2$$
, so $m\angle 1 + m\angle 3 = m\angle 2 + m\angle 3$

19)
$$\overline{MN}\cong \overline{PQ}$$
, so $\overline{PQ}\cong \overline{MN}$

21)
$$m\angle A = m\angle A$$

Fill in the blanks to complete the proof:

Given: $m\angle MOP = m\angle ROP = 90^{\circ}$; $\angle 1 \cong \angle 4$

Prove: $m\angle 2 = m\angle 3$

	Statements	Reasons
1		1 Given
2	m∠1 = m∠4	2
3	$m\angle 1 + m\angle 2 = m\angle MOP$ $m\angle 3 + m\angle 4 = m\angle ROP$	3
4	$m\angle 3 + m\angle 4 = m\angle MOP$	4
5	$m\angle 1 + m\angle 2 = m\angle 3 + m\angle 4$	5
6	$m\angle 1 + m\angle 2 = m\angle 3 + m\angle 1$	6
7		7 Reflexive Prop =
8		8 Subtraction Prop =

Statements	Reasons
1 CD = 3x-12; DE = 42, CE = 42	1 Given
2	2 Segment Addition Post.
3 8x = 3x-12 + 42	3
4	4
5	5
6	6
7	7
8	8

Use correct notation to name the following.

25.

24. _____

25. _____

26. _____

27) Marc doesn't think that the angle of the front seat in his mom's car is very cool, so he tilts the seat back. $m\angle ZWY = 95^{\circ}$ and $m\angle YWX = 30^{\circ}$. Find the measure of $\angle ZWX$.

28) \overrightarrow{AT} bisects \angle MAH. $m\angle$ MAT = $(3x-31)^{\circ}$ and $m\angle$ TAH = $(2x-5)^{\circ}$. Find $m\angle$ MAT, $m\angle$ TAH, and $m\angle$ MAH.