Inference with Means (one sample)

AP Statistics Chapter 23

William Gossett

1876 - 1937 Guinness employee

Dublin, Ireland

"Quality Assurance"
(a.k.a., taste tester)
for Guinness beer
(HORRIBLE, JOB, RIGHT?)

William Gossett

- Taste-tested batches of dark lager in samples
- Calculated that he should reject good beer about 5% of the time
- Actually rejected good beer about 15% of the time
 (WHAT?!)
- Found that the Normal model doesn't play nice with small samples...

What Does This Means?

The Student's *t-models*

more area in the tails (Because we are using "s" to estimate " σ ", there is greater "uncertainty"/variability)

These curves have

What Does This **Mean** for Means?

The Student's *t-models*

Degrees of freedom (df) Each sample size has its own model/curve!

For 1-sample means:

df = n - 1

Student's t-models

ou want to write this stuff down...)

- Use when we don't know the population standard deviation σ (when we use the sample standard deviation as an estimate for σ)
- t-distribution has fatter tails than z-distribution
- As df increase, the t-models look more and more like the Normal model.
- In fact, the t-model with infinite degrees of freedom is exactly Normal.

Calculating t vs z (you want to write this down too...)

If we know σ : (population SD)

$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$

$$t = \frac{\overline{x} - \mu}{\sqrt[S]{\sqrt{n}}}$$

t-table Practice

Find the critical value of t for 95% confidence with...

c)
$$df = 32$$

(use df = 30 - round DOWN)

ble	B			1.4	isteihut	ion orio	ical val	1100				
ble B t distribution critical values Tail probability p												
И	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.87	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.549	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.52
4	741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.650
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.002	4.773	5.893	6.869
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3,355	3.833	4.501	5.041
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
0	.700	.879	1.093	1,372	1.812	2.228	2.339	2.764	3.169	3.581	4.144	4.587
1	.697	.876	1.088	1.363	1.796	2.204	2.328	2.718	3.106	3.497	4.025	4.437
2	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
3	.694	.870	1.079	1,350	1.771	2.100	2.282	2.650	3.012	3,572	3.852	4.221
4	.692	.568	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.100
5	.691	.866	1.074	1.341	1.753	2.131	2,249	2.602	2.947	3,286	3.733	4.073
6	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
7	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3,222	3.646	3.965
8	.688	.862	1.067	1.330	1.734	2.301	2.214	2.552	2.878	3.197	3.611	3.922
9	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3,174	3,579	3.883
0	.687	.560	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
1	.686	.859	1.063	1.323	1.721	2.050	2.189	2.518	2.831	3.135	3.527	3.819
2	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
3	.685	.858	1.060	1.319	1.714	2.009	2.177	2.500	2.807	3.104	3.485	3,768
4	.685	.857	1.059	1.318	1.711	2.064	2.173	2.492	2.797	3.091	3.467	3.745
5	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
6	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
7	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
8	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
9	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
0	.683	.554	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3,385	3.646
0	.681	.851	1.050	1,303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.551
0	.679	.549	1.047	1.299	1,676	2.009	2.109	2.403	2.678	2.937	3.261	3,496
0	.679	.848	1.045	1.296	1.671	2,000	2,099	2.390	2,660	2.915	3.232	3,460
0	.678	.846	1.043	1.292	1.664	1,990	2.088	2.374	2.639	2.887	3.195	3.416
00	,677	.845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.390
00	.675	.842	1,037	1.282	1,645	1.962	2.056	2.330	2,581	2.813	3.098	3,300
	.674	.841	1.036	1.282	1.645	1,960	2.054	2.326	2.576	2.807	3,091	3.291
	50%	60%	70%	80%	90%	955	96%	98%	995	99.5%	99.8%	99.9%

conditions for inference with 1-sample means

1. Randomization

Have an SRS or representative of population

2. 10% Condition

This is not as important to check for means, as sample sizes are usually very small, but it never hurts to be safe.

3. Nearly Normal Condition

Check for *one* of the following:

- 1. Given that population is roughly normally distributed
- 2. Large enough sample size (n > 30) CLT
- 3. Check graph (dotplot is easy to make by hand) and check for plausible normality

WATCH OUT FOR OUTLIERS!!!

Our first problem with real "data"

Let's pretend that the Chip's Ahoy company claims a mean of 24 chips per cookie... do we have statistical evidence (at α = 0.05) to doubt them?

Suppose we take a random sample of 10 of the company's cookies, and get the following counts for # of chocolate chips:

21	28	19	19	23	18
18	19	26	17	26	27

One-sample *t*-**test**

 μ = true mean # of chips per cookie

Ho: μ = 24 Ha: u < 24

(because we probably wouldn't be concerned if we got MORE than 24 chips per cookie)

Conditions:

- We have a random sample of the company's cookies
- (Since n < 30, we must make a graph...) The graph of sample data shows no outliers, so normality should " be plausible.

One-sample *t*-**test**

 μ = true mean # of chips per cookie

Ho: $\mu = 24$ Ha: μ < 24

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}} = \frac{21.75 - 24}{4.025 / \sqrt{12}}$$

(fill in numbers in the formula, then just use the "t" and "p-value" from calculator)

p = 0.394 df = 11 t = -1.93Since p < alpha, we reject Ho. We HAVE evidence that the mean # of chips per cookie is less than 24.

Estimate the mean number of chocolate chips per cookie by using a 90% confidence interval EDIT_CALC NEEDS

One-sample *t*-interval

$$\bar{x} \pm t^*_{df} \times \frac{s}{\sqrt{n}}$$

= 21.75 ± (1.796) × 4.025 / \[\sqrt{12} \]

(again, fill in numbers in the formula, then just get the interval from the calculator)

(19.633, 23.837)

We are 90% confident that the (19.663, 23.837) true MEAN number of chips per x=21.75 cookie is between 19.633 and x=1223.837.

Homework #14

Ch 23 p.541 #2, 7, 10, 11, 13a-c, 15, 21, 31 skip 2c & 2d